9020 Free Classifieds is also available in your country: United States. Starting good deals here now!

Tungsten vs Tungsten Carbide - What's the Difference?

Nov 29th, 2021 at 01:42   Multimedia   Sai Kung   27 views
Contact us
  • img

Location: Sai Kung

Price: Contact us


Tungsten, element 74 of the periodic table, has come a long way since its early use as a material for filaments in lightbulbs. This silvery-white lustrous metal is becoming more present in the industry thanks to the alloying process – that is, the ability to add metallic elements together to create new, improved materials known as alloys.

Tungsten is useful for glass-to-metal seals, as its thermal expansion coefficient is on par with borosilicate glass, and finds many uses in lamp filaments, television tubes, electrical contact points, x-ray targets, heating elements, and other high-temperature applications. It is most popular usages are in dry lubricant (tungsten disulfide) and alloys such as high-speed tool steels, hard metal, and of course tungsten carbide – but more on that in the next section.

Tungsten Carbide

Tungsten Carbide is an alloy of tungsten and carbon, made by heating tungsten powder with carbon and hydrogen at 1,400 - 1,600°C (2,550 - 2,900°F). The resulting alloy is 2-3 times as rigid as steel and has a compressive strength surpassing all known melted, cast, and forged metals. It is highly resistant to deformation and keeps its stability at both extreme cold and hot temperatures. When in its monocarbide form (chemical formula of WC), tungsten carbide rivals diamond for the hardest known material. Its impact resistance, toughness, and resistance to galling/abrasions/erosions are exceptional, lasting up to 100 times longer than steel in extreme conditions. Its properties place tungsten carbide in the metal-like substances since it is technically a ceramic cement of tungsten, carbon, and some binder (often cobalt), which is also why it cannot be heat-treated in any way. It has a density of 15.7 g/cm3 and is generally not the best electrical conductor. However, it conducts heat much faster than tool steel.

It is incredibly difficult to machine Tungsten Carbide Roller, as most machine bits and tools are made of tungsten carbide themselves. Tungsten carbide is generally only milled or lathed and is done so when in its soft, or “green” state, and can only be done with diamond-coated bits. It can also be cast and rapidly quenched to form an extremely hard crystal structure. Tungsten carbide is invaluable in making hard metal, which is a form of tungsten carbide, as well as making mill products, high-speed tools, military weapons, armor, and other rugged applications.